6.3 Medians and Altitudes of Triangles

Learning Standard HSG-CO.C. 10

Essential Question what conjectures can you make about the medians and altitudes of a triangle?

EXPLORATION 1

Finding Properties of the Medians of a Triangle

Work with a partner. Use dynamic geometry software. Draw any $\triangle A B C$.
a. Plot the midpoint of $\overline{B C}$ and label it D. Draw $\overline{A D}$, which is a median of $\triangle A B C$. Construct the medians to the other two sides of $\triangle A B C$.

Sample

Points
A $(1,4)$
$B(6,5)$
C(8,0)
$D(7,2.5)$
$E(4.5,2)$
$G(5,3)$
b. What do you notice about the medians? Drag the vertices to change $\triangle A B C$. Use your observations to write a conjecture about the medians of a triangle.
c. In the figure above, point G divides each median into a shorter segment and a longer segment. Find the ratio of the length of each longer segment to the length of the whole median. Is this ratio always the same? Justify your answer.

EXPLORATION 2
 Finding Properties of the Altitudes of a Triangle

Work with a partner. Use dynamic geometry software. Draw any $\triangle A B C$.
a. Construct the perpendicular segment from vertex A to $\overline{B C}$. Label the endpoint D. $\overline{A D}$ is an altitude of $\triangle A B C$.
b. Construct the altitudes to the other two sides of $\triangle A B C$. What do you notice?
c. Write a conjecture about the altitudes of a triangle. Test your conjecture by dragging the vertices to change $\triangle A B C$.

Communicate Your Answer

3. What conjectures can you make about the medians and altitudes of a triangle?
4. The length of median $\overline{R U}$ in $\triangle R S T$ is 3 inches. The point of concurrency of the three medians of $\triangle R S T$ divides $\overline{R U}$ into two segments. What are the lengths of these two segments?

6.3 Lesson

Core Vocabulary

median of a triangle, p. 320
centroid, p. 320
altitude of a triangle, p. 321
orthocenter, p. 321

Previous

midpoint
concurrent
point of concurrency

Step 1

Find midpoints Draw $\triangle A B C$. Find the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{A C}$. Label the midpoints of the sides D, E, and F, respectively.

What You Will Learn

Use medians and find the centroids of triangles.
$>$ Use altitudes and find the orthocenters of triangles.

Using the Median of a Triangle

A median of a triangle is a segment from a vertex to the midpoint of the opposite side. The three medians of a triangle are concurrent. The point of concurrency, called the centroid, is inside the triangle.

(5) Theorem

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle A B C$ meet at point P, and $A P=\frac{2}{3} A E, B P=\frac{2}{3} B F$, and $C P=\frac{2}{3} C D$.

Proof BigIdeasMath.com

CONSTRUCTION Finding the Centroid of a Triangle

Use a compass and straightedge to construct the medians of $\triangle A B C$.

SOLUTION

Step 2

Draw medians Draw $\overline{A E}, \overline{B F}$, and $\overline{C D}$. These are the three medians of $\triangle A B C$.

Step 3

Label a point Label the point where $\overline{A E}, \overline{B F}$, and $\overline{C D}$ intersect as P. This is the centroid.

EXAMPLE 1 Using the Centroid of a Triangle

In $\triangle R S T$, point Q is the centroid, and $S Q=8$. Find $Q W$ and $S W$.

SOLUTION

$$
\begin{aligned}
S Q & =\frac{2}{3} S W & & \text { Centroid Theorem } \\
8 & =\frac{2}{3} S W & & \text { Substitute } 8 \text { for } S Q . \\
12 & =S W & & \text { Multiply each side by the reciprocal, } \frac{3}{2} .
\end{aligned}
$$

Then $Q W=S W-S Q=12-8=4$.
So, $Q W=4$ and $S W=12$.

FINDING AN

 ENTRY POINTThe median $\overline{S V}$ is chosen in Example 2 because it is easier to find a distance on a vertical segment.

JUSTIFYING CONCLUSIONS

You can check your result by using a different median to find the centroid.

EXAMPLE 2 Finding the Centroid of a Triangle

Find the coordinates of the centroid of $\triangle R S T$ with vertices $R(2,1), S(5,8)$, and $T(8,3)$.

SOLUTION

Step 1 Graph $\triangle R S T$.
Step 2 Use the Midpoint Formula to find the midpoint V of $\overline{R T}$ and sketch median $\overline{S V}$.

$$
V\left(\frac{2+8}{2}, \frac{1+3}{2}\right)=(5,2)
$$

Step 3 Find the centroid. It is two-thirds of the distance from each vertex to the midpoint of the opposite side.

The distance from vertex $S(5,8)$ to $V(5,2)$ is $8-2=6$ units.
So, the centroid is $\frac{2}{3}(6)=4$ units down from vertex S on $\overline{S V}$.
So, the coordinates of the centroid P are $(5,8-4)$, or $(5,4)$.

Monitoring Progress \quad) Help in English and Spanish at Bigldeas/Math.com

There are three paths through a triangular park. Each path goes from the midpoint of one edge to the opposite corner. The paths meet at point P.

1. Find $P S$ and $P C$ when $S C=2100$ feet.
2. Find $T C$ and $B C$ when $B T=1000$ feet.
3. Find $P A$ and $T A$ when $P T=800$ feet.

Find the coordinates of the centroid of the triangle with the given vertices.
4. $F(2,5), G(4,9), H(6,1)$
5. $X(-3,3), Y(1,5), Z(-1,-2)$

Using the Altitude of a Triangle

An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.

G) Core Concept

Orthocenter

The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the orthocenter of the triangle.
The lines containing $\overline{A F}, \overline{B D}$, and $\overline{C E}$ meet at the orthocenter G of $\triangle A B C$.

As shown below, the location of the orthocenter P of a triangle depends on the type of triangle.

Acute triangle
P is inside triangle.

Right triangle
P is on triangle.

Obtuse triangle P is outside triangle.

EXAMPLE 3 Finding the Orthocenter of a Triangle

Find the coordinates of the orthocenter of $\triangle X Y Z$ with vertices $X(-5,-1), Y(-2,4)$, and $Z(3,-1)$.

SOLUTION

Step 1 Graph $\triangle X Y Z$.
Step 2 Find an equation of the line that contains the altitude from Y to $\overline{X Z}$. Because $\overline{X Z}$ is horizontal, the altitude is vertical. The line that contains the altitude passes through $Y(-2,4)$. So, the equation of the line is $x=-2$.

Step 3 Find an equation of the line that contains the altitude from X to $\overline{Y Z}$.

$$
\text { slope of } \overleftrightarrow{Y Z}=\frac{-1-4}{3-(-2)}=-1
$$

Because the product of the slopes of two perpendicular lines is -1 , the slope of a line perpendicular to $\overleftrightarrow{Y Z}$ is 1 . The line passes through $X(-5,-1)$.

$$
\begin{aligned}
y & =m x+b & & \text { Use slope-intercept form. } \\
-1 & =1(-5)+b & & \text { Substitute }-1 \text { for } y, 1 \text { for } m \text {, and }-5 \text { for } x . \\
4 & =b & & \text { Solve for } b .
\end{aligned}
$$

So, the equation of the line is $y=x+4$.
Step 4 Find the point of intersection of the graphs of the equations $x=-2$ and $y=x+4$.

Substitute -2 for x in the equation $y=x+4$. Then solve for y.

$$
\begin{array}{ll}
y=x+4 & \text { Write equation. } \\
y=-2+4 & \text { Substitute }-2 \text { for } x . \\
y=2 & \text { Solve for } y .
\end{array}
$$

So, the coordinates of the orthocenter are $(-2,2)$.

Monitoring Progress

Tell whether the orthocenter of the triangle with the given vertices is inside, on, or outside the triangle. Then find the coordinates of the orthocenter.
6. $A(0,3), B(0,-2), C(6,-3)$
7. $J(-3,-4), K(-3,4), L(5,4)$

In an isosceles triangle, the perpendicular bisector, angle bisector, median, and altitude from the vertex angle to the base are all the same segment. In an equilateral triangle, this is true for any vertex.

EXAMPLE 4 Proving a Property of Isosceles Triangles

Prove that the median from the vertex angle to the base of an isosceles triangle is an altitude.

SOLUTION

Given $\triangle A B C$ is isosceles, with base $\overline{A C}$. $\overline{B D}$ is the median to base $\overline{A C}$.

Prove $\overline{B D}$ is an altitude of $\triangle A B C$.

Paragraph Proof Legs $\overline{A B}$ and $\overline{B C}$ of isosceles $\triangle A B C$ are congruent. $\overline{C D} \cong \overline{A D}$ because $\overline{B D}$ is the median to $\overline{A C}$. Also, $\overline{B D} \cong \overline{B D}$ by the Reflexive Property of Congruence (Thm. 2.1). So, $\triangle A B D \cong \triangle C B D$ by the SSS Congruence Theorem (Thm. 5.8). $\angle A D B \cong \angle C D B$ because corresponding parts of congruent triangles are congruent. Also, $\angle A D B$ and $\angle C D B$ are a linear pair. $\overline{B D}$ and $\overline{A C}$ intersect to form a linear pair of congruent angles, so $\overline{B D} \perp \overline{A C}$ and $\overline{B D}$ is an altitude of $\triangle A B C$.

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com
8. WHAT IF? In Example 4, you want to show that median $\overline{B D}$ is also an angle bisector. How would your proof be different?

Concept Summary

Segments, Lines, Rays, and Points in Triangles

	Example	Point of Concurrency	Property
perpendicular			
bisector			

- Vocabulary and Core Concept Check

1. VOCABULARY Name the four types of points of concurrency. Which lines intersect to form each of the points?
2. COMPLETE THE SENTENCE The length of a segment from a vertex to the centroid is \qquad the length of the median from that vertex.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, point P is the centroid of $\triangle L M N$. Find $P N$ and QP. (See Example 1.)
3. $Q N=9$

4. $Q N=21$

5. $Q N=30$
6. $Q N=42$

In Exercises 7-10, point D is the centroid of $\triangle A B C$. Find $C D$ and $C E$.
7. $D E=5$

8. $D E=11$

9. $D E=9$

10. $D E=15$

In Exercises 11-14, point G is the centroid of $\triangle A B C$. $B G=6, A F=12$, and $A E=15$. Find the length of the segment.

11. $\overline{F C}$
12. $\overline{B F}$
13. $\overline{A G}$
14. $\overline{G E}$

In Exercises 15-18, find the coordinates of the centroid of the triangle with the given vertices. (See Example 2.)
15. $A(2,3), B(8,1), C(5,7)$
16. $F(1,5), G(-2,7), H(-6,3)$
17. $S(5,5), T(11,-3), U(-1,1)$
18. $X(1,4), Y(7,2), Z(2,3)$

In Exercises 19-22, tell whether the orthocenter is inside, on, or outside the triangle. Then find the coordinates of the orthocenter. (See Example 3.)
19. $L(0,5), M(3,1), N(8,1)$
20. $X(-3,2), Y(5,2), Z(-3,6)$
21. $A(-4,0), B(1,0), C(-1,3)$
22. $T(-2,1), U(2,1), V(0,4)$

CONSTRUCTION In Exercises 23-26, draw the indicated triangle and find its centroid and orthocenter.
23. isosceles right triangle 24. obtuse scalene triangle
25. right scalene triangle
26. acute isosceles triangle

ERROR ANALYSIS In Exercises 27 and 28, describe and correct the error in finding $D E$. Point D is the centroid of $\triangle A B C$.
27.

$$
\begin{aligned}
& D E=\frac{2}{3} A E \\
& D E=\frac{2}{3}(18) \\
& D E=12
\end{aligned}
$$

28.

$$
\begin{aligned}
D E & =\frac{2}{3} A D \quad A D=24 \\
D E & =\frac{2}{3}(24) \\
D E & =16
\end{aligned}
$$

PROOF In Exercises 29 and 30, write a proof of the statement. (See Example 4.)
29. The angle bisector from the vertex angle to the base of an isosceles triangle is also a median.
30. The altitude from the vertex angle to the base of an isosceles triangle is also a perpendicular bisector.

CRITICAL THINKING In Exercises 31-36, complete the statement with always, sometimes, or never. Explain your reasoning.
31. The centroid is \qquad on the triangle.
32. The orthocenter is \qquad outside the triangle.
33. A median is \qquad the same line segment as a perpendicular bisector.
34. An altitude is \qquad the same line segment as an angle bisector.
35. The centroid and orthocenter are \qquad the same point.
36. The centroid is \qquad formed by the intersection of the three medians.
37. WRITING Compare an altitude of a triangle with a perpendicular bisector of a triangle.
38. WRITING Compare a median, an altitude, and an angle bisector of a triangle.
39. MODELING WITH MATHEMATICS Find the area of the triangular part of the paper airplane wing that is outlined in red. Which special segment of the triangle did you use?

40. ANALYZING RELATIONSHIPS Copy and complete the statement for $\triangle D E F$ with centroid K and medians $\overline{D H}, \overline{E J}$, and $\overline{F G}$.
a. $E J=$ \qquad KJ
b. $D K=$ \qquad KH
c. $F G=$ \qquad KF
d. $K G=$ \qquad $F G$

MATHEMATICAL CONNECTIONS In Exercises 41-44, point D is the centroid of $\triangle A B C$. Use the given information to find the value of x.

41. $B D=4 x+5$ and $B F=9 x$
42. $G D=2 x-8$ and $G C=3 x+3$
43. $A D=5 x$ and $D E=3 x-2$
44. $D F=4 x-1$ and $B D=6 x+4$
45. MATHEMATICAL CONNECTIONS Graph the lines on the same coordinate plane. Find the centroid of the triangle formed by their intersections.

$$
\begin{aligned}
& y_{1}=3 x-4 \\
& y_{2}=\frac{3}{4} x+5 \\
& y_{3}=-\frac{3}{2} x-4
\end{aligned}
$$

46. CRITICAL THINKING In what type(s) of triangles can a vertex be one of the points of concurrency of the triangle? Explain your reasoning.
47. WRITING EQUATIONS Use the numbers and symbols to write three different equations for $P E$.

48. HOW DO YOU SEE IT? Use the figure.

a. What type of segment is $\overline{K M}$? Which point of concurrency lies on $\overline{K M}$?
b. What type of segment is $\overline{K N}$? Which point of concurrency lies on $\overline{K N}$?
c. Compare the areas of $\triangle J K M$ and $\triangle K L M$. Do you think the areas of the triangles formed by the median of any triangle will always compare this way? Explain your reasoning.
49. MAKING AN ARGUMENT Your friend claims that it is possible for the circumcenter, incenter, centroid, and orthocenter to all be the same point. Do you agree? Explain your reasoning.
50. DRAWING CONCLUSIONS The center of gravity of a triangle, the point where a triangle can balance on the tip of a pencil, is one of the four points of concurrency. Draw and cut out a large scalene triangle on a piece of cardboard. Which of the four points of concurrency is the center of gravity? Explain.
51. PROOF Prove that a median of an equilateral triangle is also an angle bisector, perpendicular bisector, and altitude.
52. THOUGHT PROVOKING Construct an acute scalene triangle. Find the orthocenter, centroid, and circumcenter. What can you conclude about the three points of concurrency?
53. CONSTRUCTION Follow the steps to construct a nine-point circle. Why is it called a nine-point circle?
Step 1 Construct a large acute scalene triangle.
Step 2 Find the orthocenter and circumcenter of the triangle.

Step 3 Find the midpoint between the orthocenter and circumcenter.

Step 4 Find the midpoint between each vertex and the orthocenter.

Step 5 Construct a circle. Use the midpoint in Step 3 as the center of the circle, and the distance from the center to the midpoint of a side of the triangle as the radius.
54. PROOF Prove the statements in parts (a)-(c).

Given $\overline{L P}$ and $\overline{M Q}$ are medians of scalene $\triangle L M N$. Point \xrightarrow{R} is on $\overrightarrow{L P}$ such that $\overline{L P} \cong \overrightarrow{P R}$. Point S is on $\overrightarrow{M Q}$ such that $\overline{M Q} \cong \overline{Q S}$.
Prove a. $\overline{N S} \cong \overline{N R}$
b. $\overline{N S}$ and $\overline{N R}$ are both parallel to $\overline{L M}$.
c. R, N, and S are collinear.

Maintaining Mathematical Proficiency

Determine whether $\overline{\boldsymbol{A B}}$ is parallel to $\overline{\boldsymbol{C D}}$. (Section 3.5)
55. $A(5,6), B(-1,3), C(-4,9), D(-16,3)$
56. $A(-3,6), B(5,4), C(-14,-10), D(-2,-7)$
57. $A(6,-3), B(5,2), C(-4,-4), D(-5,2)$
58. $A(-5,6), B(-7,2), C(7,1), D(4,-5)$

